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VELOCITY REQUIREMENTS FOR ONE-DIMENSIONAL TARGETS

Thomas R. Jarboe

University of California

Los Alamoa Scientific Laboratory

Los Alamoa, New Mexico 87545

ABSTRACT

A simple zero dimensional model which includes

thermal conduction, Bremaatrahlung, compressional

heating, alpha heating, and wall movement losses is used

to estimate the velocity necessary for a fusion reactor

baaed on impact fusion- Simple ID impact and spherical

3D shock heating and compreaaion are considered. The

results are that an absolute minimum of 6E7 cm/s is

needed for the ID case while 0.85E7 cm/s is needed in

the 3D case. However 7E7 cm/s and 1.3E7 cm/a

respectively look like good operating pointa.
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INTRODUCTION

The purpose of this paper is to give an eetimate of the minimum

velocity needed for a projectile which is to sklockheat and compreeeionally

heat, in a simple one-dimensional manner, a column of DT gas to

temperatures and denaitiea neceesary for a fueion reactot. The eeme mde.1

w1ll also be applied to spherical Implosions. The physical phenomena taken

into account in the ID eetimetee are thermal conduction, Bremastrahlung,

compressional heating, alpha heating, and losses due to ❑otion of the

containing back wall. In the 3D estimate the same effects are included,

however there is no back wall but compression ratioa and tranefer

efficiencies are diecuseed. These calculations are of the temperature at

the center of the plasma and analytic equatione are used to estimate the

rate of change of this temperature due to each of the physical effecte.

Thus, there is no zoning of the plasma and ite pressure is aesumed uniform

and acts on a slug (or epherical ehell) which is assumed to have a mass per

unit area but no thicknese. Its velocity is determined by F = ma and the

initial velocity.

DISCUSSION AND RESULTS

A. General

The basic equation for the normalized rate of change of the

temperature is as follows:

lgm- [31(Y-l)V

~ dt
p + 2.75E-4 fanT‘5/3 exp(-211.1/T1/3)

x

(1)

[13 1.4E21 T5/2- 3.2E-14 n/T1/2 - ~ ———
2nA nx2

The square bracket factora are needed when compression is 3D. The x

which is the length of the plasma in ID becomes the radiue of the shell In

3D. -3T is in eV, n is In cm , and
‘P

ie the velocity of plaema com-

pression. A y of 5/3 18 ueed in this calculation. The first term on the

I



right is the

heating term.l
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compreesional heating term. The second term 10 the alpha

Where fa 10 the fraction of alpha energy being absorbed

fa :

Where et>

Spitzer2

8ood only

~“

= 4x Volume/Area and Aa la the range of a particles 8iven by

due to energy absorption by only the electrons. The equation is

for temperatures up to about 20 keV. The third term on the right

la for Bremastrahlung and la derived from the equation of Boyd and

Sanderson.3 The last term 10 the thermal conduction lees term. The

coefficient of thermal conductivity of an Unmagnetized plasma la given by

Spitzer.2 The term is found by coneiderin8 a system of contained plaama

with thermal conduction in only one dicection. To get this equation one

ueea the fact that the pressure and its time derivative are uniform over

the plaemn and the denmity profile 10 time independent.

In the calculation the plasma’s initial temperature is found by

assuming that it ie equal to that of the DT in a one-dimensional shock

where the piston has the velocity of the imploding wall. The energy which

* needed for shock heatin8 la subtracted from the plug energy and the

rmaining velocity 18 th9 initial v910clty for th9 calculation and is uaqd

to find tha Initial tgmpwature. This t~mpqratupg for ~T ~a:

Ti - #/2.4E12 (eV, cm/s)

The final approximation la that the maes of the plaema ia ignorad.

Before discueslng tha methods of optimization for minimum velocity and

the calculational results a diecuesion of Eq. (1) is in order. Multiplying

it by x and rearran8in8 yieldm;

.

+ [B(T) - A(T)]y (2)
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when

1 dT
>OSfa=l, andysnx.

TK

A(T), B(t) and C(T) are the Alpha heating, Bremsstrahlung, and thermal

conduction temperature dependent parts. Note that the velocity requirement

for a given T depends only on y which can be chosen to minimize the v
P

requirement. However in the lD case Bremestrahlung is worse early in time

since B(T) a l/T1/2. This gives another velocity requirement namely

(Y - 1) Vp > B(Ti)y. :3)

Since both C(T) and A(T) have strong temperature dependence they are

negligible early in time. Thus Eq. (2) and (3) give the velocity

requirement for achiaving any given T in lD. Besides the obvious factor of

3 in Eq. (2) another advantage of 3D compression is that the velocity

requirements for both Bremsstrahlung and thermnl conduction are greater at

higher compression because y is time dependent in 3D. Thus, an optimum y

can be picked for Eq. (2) further reducing the velocity requirements in 3D.

Figure 1 shows the lD velocity requirement as a function of temperature.

In Pig. 1 the mass per unit area is infinite and hence it does not give

information about Q. Q 1s the ratio of thermonuclear energy divided by the

initial kinetic energy.

a. lD Q Calculations

The fact that the back wall motion is included in these calculation

adde a loss mechanism which does not depend on the nl product but more on

nT. In these calculations the back wall mo~:eeaccording to:

P - P. Vw (V8 + 4/3vw)
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where Vw is the wall speed and p is the plasma pressure. p. = 20 gm/cm3

and VB = 5.E5 cm/s. These are the density and sound speed of the wall

material. The initial length of the system is set at 10 cm. The mass unit

area and n are varied (20% stop size) to find the optimum Q for each

velocity. The results are shown in Table I. Since fuel depletion is not

calculated Q’s over 100 are not accurate, but these calculations show when

alpha heating dominates Eqo (1)= Also shown in Table I is the ❑inimum

energy required to achieve the Q’s shown. The table shows the initial

Bremestrahlung cooling time divided by the time needed to shock-heat the

gas to its initial temperature. The fact that this ratio is about 1 shows

th~t some cooling will occur during the shock heating process especially in

the gas that is shocked fire?. Thus the actual initial temperature may be

some lower than used in the calculation. However, if it is large enough to

satisfy Eq. (3) then the plasma will heat and the same Q’s will be achi?ved

but with a larger compression ratio.

Figure 2 shows the plasma length, plasma temperature and Q versus time

for the v = 7E7 cm/s case. It can be seen in Fig. 2 that the

compresssional heating ignites the fuel and ❑ost of the energy is released

during the expansion. The piston in this case has a mass of 0.86 gin/cmand

an energy of 230 MJ/cm2. The 10 system alao has the other two undiscussed

dimensions which can cause added thermal conduction losses= However, it

appears that in the v = 7E7 case the diameter need only be about 1 cm so

that radial thermal conduction losses even at L m 10 cm will be s~ll

compared to the compressional heating. The reason that the diameter can be

this small is due to the strong temperature dependence of the thermal

conduction- Thus, a copper slug for the 7E7 cm/s case could bc 1 cm in

diameter and 1 mm thick which is about the thickness of a penny and half as

large in diameter.

In this example the tot;.]1energy is rather large- However, the system

can be made smaller provided that a) the values of YP the vekciL)fs and

mass per unit area are kept the same) b) the back wall movement doesn’t rob

significantly more energy, and c) the thickness of the slug does not exceed

the final plasma length. The last condition is necessary for the mo~?l to

be applicable and will be necessary for efficient transfer of liner energy

into plasma energy in any case. This last condition puts the largest Lower
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bound on the system size. Thus if the plug were tungsten then it could be

0.5 m thick and the system could be made half as large in all dimensions

giving a peak compreeeion length of 0.6 m which ia acceptable. The area

2 with an energy of about 50 MJ.of the plug would be about 0.2 cm

C. 3D Q Calculations

The optimization in this case is done by varying y and the mass per .

unit area divided by y. The maximum Q for a given velocity is sham in

Table 11. The energy in the mdel thus far can be arbitrarily small but

*.Thatis ehown is from the folloving coneiderationa. In order for the ehell

to efficiently transfer its energy to the plasma it cannot have a thickness

much greater than the radius of the plasma. If ita thickness is too great,

it will transfer too much of ite kinetic energy into its own Internal

energy. This is a consequence of the fact that the speeds involved here

are well above the speed of sound in the ehell material. From this we have

that at

f.

peak compression

E + Poviz =3nfkTf.

Here f. is the ratio of shell volume to plasma volume and c is the

efficiency of transfer of ehell energy to plasma energy. From this the

initial energy in the shell can be written as

,. f;=[::~:’’:,f+povf

= 35 E41/vi4 (ergs)

where nfrf is the final value of 3E22/cm2. Tf ie 4000 eV, P. is 20, and

is the initial shell velocity. Values from Eq. (4) are ah- in Table

when f. = 7 and c - 1/4.

vi

11

(4)
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Another consideration is that radial compression ratio limitations

also limit the minimum velocity. Figure 3 shows the velocity requirements

necessary for each compression ratio. It seems that a good velocity would

be 1.3E7 cm/s. It will give a high Q for a modest amount of shell energy

while requiring a radial compression of about 20:1.

CONCLUSION

It appears that a projectile with an energy of 50 MJ and a velocity of

about 7E7 cm/s will be required for simple lD impact fusion and that an

imploding shell of about 12 MJ at a speed of 1.3E7 cm/s could be used for a

3D implosion. In lD the velocity is much higher but the geometry is

simpler. The ability to achieve high velocities compared to the ability to

produce symmetrical 3D implosions will determine which geometry is most

desirable.
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Fig. 2. Plasma length, temperature, and Q w time for the 1!)
impact in the 7E7 cm/s velocity case of Table I.
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Velocity

1X107

2%107

3%107

4x 107

s%I07

5.5%107

6X107

6.5x107

7%107

8X107

9%107

IOX107

TABLE I

Optimum parameters fm 1-D impact

T
mass

mlu Q ~- ‘~ n% Initial s
cm cm

41eV .000007 1.1
160 .0021 8.0
360 .028 26
640 .15 69

I000 .64 150

I200 2.5 630

I500 >!00 1100

1600 >100 360

I800 >!00 230
2100 >100 I90
2400 >100 t70
2600 >100 150

. 22gm

.40

.58

.84.

1.2

4.2

6.0

L7

.96

.60

.43

.30

6.7x10acm+

2.6x10z’

5.0xlo2’

8.7x102’

Lsxloz

2.4x10a

3.4xloa

3.6x10Z

3.6x10a

4.1xloa

4.5%10=

4.3X102

%9a IEAT

1.0
Lo
1.2

1.1

1.!

.82

.71

● 75

.86

.93

Lo

1.2
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TABLE II

Optimum parameters for 3-D impact

VelOciky

.5%107

.6

● 7

.8

.85

.9

II.

13.

Is.

209

30●

40.

TRUUAL

IOeV

15

20

27

30

34

50

60

81

i 67

3/5“1

667

(1

. 010
m 029

.068

mIs

>100.

>100

>100

>100

>100

>100

>100

>100

Energy (MJ)

--

--

-.

-.

67

54

24

12

69●

22.

. 43

● 014


